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On how to identify a seminal fluid protein:
A commentary on Hurtado et al.

COMMENTARY

Seminal fluid proteins (Sfps) are transferred along with sperm to females

at mating. Their striking effects on the behaviour and physiology of

females in many insects, and their interesting evolutionary dynamics—

with some Sfps evolving rapidly (Haerty et al., 2007; Patlar et al., 2021;

Swanson et al., 2001; Wagstaff & Begun, 2007) and others being more

conserved (Findlay et al., 2014; Kelleher et al., 2009; McGeary &

Findlay, 2020; Wigby et al., 2020)—have attracted considerable attention

from biologists (Avila et al., 2011). However, the study of Sfps across

insects is hampered by the small size of many species, which means that

ejaculates often cannot be collected externally in the same way as they

can in many vertebrate—or some larger invertebrate—systems.

In the model insect Drosophila melanogaster, Sfps have been iden-

tified through several methods (reviewed in Avila et al., 2011).

Recently, Hurtado et al. published an updated review of the methods,

and proposed modified criteria for Sfps that led them to generate a list

of such proteins (Hurtado et al., 2021). This list differs in substantial

respects from a comprehensive Sfp list that we previously published

(Wigby et al., 2020). The list used can greatly influence the conclusion

one makes in evolutionary analyses and future functional genetic

studies of Sfps in D. melanogaster and other species. Therefore, the

field needs an unbiased and thorough Sfp database. As such, we think

it important to discuss the criteria proposed by Hurtado et al.

We agree with Hurtado et al. that there is a core set of especially

well-established Sfps (termed ‘Known Seminal Genes’, KSGs, in

Hurtado et al.) for which there is near unequivocal evidence of trans-

fer from males to females at mating, eg, from studies using antibodies

(eg, Bertram et al., 1996; Findlay et al., 2014; LaFlamme et al., 2012,

2014; Lung et al., 2002; Lung & Wolfner, 1999; Monsma et al., 1990;

Ravi Ram et al., 2005; Sepil et al., 2020; Singh et al., 2018; Sirot

et al., 2009; Sirot, Wolfner, & Wigby, 2011; Wigby et al., 2009; Wong

et al., 2008), isotopic labelling (Findlay et al., 2008; McCullough

et al., 2022; McDonough-Goldstein et al., 2022) or semi-quantitative

proteomics (Sepil et al., 2019). These protein-focused methods cur-

rently represent the ‘gold standard’ in the field for Sfp identification.

We also agree with Hurtado et al. that there are likely many more

Sfps beyond the KSGs, and that currently these candidate Sfps are

based on less direct evidence. However, while we recognize that

assessing the evidence for candidate Sfps in the absence of direct pro-

tein identification is somewhat subjective, we caution against the

criteria used by Hurtado et al. (2021). Their additional Sfp candidates

are limited to genes that show high and exclusive expression in the

male accessory glands in data from FlyAtlas and modENCODE (Brown

et al., 2014; Leader et al., 2018). Such genes had previously been

referred to as ‘Acps’, for ‘Accessory Gland Proteins’ (Wolfner, 1997).

Hurtado et al. further applied in silico analysis to predict from nucleic

acid sequence data proteins that had signal peptides and extracellular

activity. Knowledge of which genes are highly expressed in the acces-

sory glands and, their predicted behaviour, is valuable: eg, it can form

part of the toolkit for identifying new Sfps, and it may be useful for

functional or evolutionary studies of accessory gland tissues, or, more

broadly, sex-biased gene expression. However, many known Sfps do

not conform to one or more of the expression or sequence criteria

used in Hurtado et al.’s paper. For example, some D. melanogaster Sfps

are not highly or exclusively expressed in the accessory glands (see

figs S2 and S5 in Wigby et al., 2020, and table S1 of Hurtado

et al., 2021)—some derive from the ejaculatory duct, ejaculatory bulb

and/or the testes (Avila et al., 2015; Bretman et al., 2010;

Cavener, 1985; Findlay et al., 2008; Iida & Cavener, 2004; Ludwig

et al., 1991; Lung & Wolfner, 2001; Rexhepaj et al., 2003; Richmond

et al., 1980; Sepil et al., 2019; Takemori & Yamamoto, 2009), some

are additionally expressed in females (Findlay et al., 2008; Sepil

et al., 2019), and a recent proteomic study found that 67 Sfps that are

expressed at high levels in Sfp-producing glands are additionally

expressed in testes (McCullough et al., 2022). Moreover, the repro-

ductive tissue that expresses a particular Sfp gene can change over

evolutionary time (Cavener, 1985; Sirot et al., 2014). Almost a third of

D. melanogaster’s KSGs (52/174) would be excluded using the expres-

sion cut-offs applied by Hurtado et al. Finally, it is worth noting that in

silico signal peptide and extracellular predictions are imperfect in

predicting whether or not proteins are secreted, for a variety of mecha-

nistic reasons, including occurrences of unconventional protein secre-

tion (Corrigan et al., 2014; Monteleone et al., 2015; Rabouille, 2017).

By using different criteria, Hurtado et al. (2021) and we (Wigby

et al., 2020) arrived at different extended lists of ‘high confidence’
candidate Sfps. Both lists share the 174 KSGs, but they diverge

beyond that, leading to tallies of 220 and 294 Sfps respectively.
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Hurtado et al.’s criteria exclude a number of proteins that are arguably

good Sfp candidates. For example, although Obp8a and Glaz proteins

have not yet been detected in females after mating, both proteins are

detected in male accessory glands; they are found in higher abun-

dance in the accessory glands of virgin, as compared to mated, males

(consistent with transfer to females); they have predicted signal pep-

tides and extracellular activity, and they are accessory gland biased in

expression. However, by failing to reach arbitrary expression cut-offs,

they are not included in Hurtado et al.’s list. D. melanogaster Sfps have

a dynamic range in abundance of �103 (Findlay et al., 2008) which

suggests that a high expression cut-off will exclude many true Sfps.

Instead, 46 highly expressed accessory gland genes are included in

Hurtado et al.’s extended list, for which there is no additional evi-

dence of protein production or dynamics (‘unconfirmed high confi-

dence candidates’ [UHCCs]). It is debatable whether these UHCCs

represent more robust Sfp candidates than at least some of those

listed in Wigby et al. (2020) but excluded by Hurtado et al. (2021).

By making exclusive and high accessory gland gene expression

requirements for UHCCs, the Hurtado et al. Sfp list also risks biases in

further analyses. Sfps that are additionally expressed in other parts of

the male, or the female, and which thus may have additional functions

(including non-reproductive), are excluded from being considered as

UHCCs. This becomes problematic for evolutionary analyses of Sfps

of the type performed by Hurtado et al. Genes with multiple pleiotro-

pic functions may be under evolutionary constraint driven by some

but not all of their functions (Hoffmann, 2013; Meisel, 2011; Parsch &

Ellegren, 2013). By selectively removing these potentially more con-

strained genes in favour of accessory gland-specific (and presumably

reproduction-specific) genes, Hurtado et al. risk predicting artificially

high Sfp gene turnover across species. Biases in Sfp datasets may also

compromise the efficiency and precision of future functional studies

aimed at understanding the role of Sfps and their composition in fertil-

ity, because all such approaches rely on the accuracy of the Sfp list.

In summary, though a valid, and historically important, way to identify

some Sfps, the use of high and exclusive accessory gland expression and

predicted signal sequences as sole criteria for Sfps, as in Hurtado et al.,

excludes Sfps that are expressed at lower levels and in locations other

than male accessory glands (including expression in both sexes) and Sfps

that are secreted by non-standard mechanisms (Avila et al., 2011;

Bertram et al., 1996; Boes et al., 2014; Cavener, 1985; Findlay

et al., 2008; Lung & Wolfner, 2001; Sepil et al., 2019; Sirot, Hardstone,

et al., 2011). We believe that it is important to include all of these catego-

ries in comprehensive studies of Sfp function and evolution.
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